
Table II.	Trifluoromethylation	of Aldehydes and Keton	ies
-----------	----------------------	------------------------	-----

run	carbonyl compound	method ^a	product	yield, ^b %	run	carbonyl compound	method ^a	product	yield, ^ø %
1	сн _з о Сно	Α		(4b)92	7	A.	В		65
2	C ₂ H ₅ CHO	Α		(4c) 60	8 9	С⊢сн₃	A B		trace 60
3	СН₃О, СНО СН₃О	Α	CH ₃ O CH ₃ O	(4d)78	10		в	CF3 OH	84
4 5	O≺ ^{(CH₂)₈CH₃ CH₃ ⁽⁵⁾}	A B	HO_(CH ₂) ₈ CH ₃ CF ₃ CH ₃	(6) 36 (6) 83	11	ÛV	в	CF3 OH	73
6	$\circ \prec^{(CH_2)_4 CH_3}_{(CH_2)_4 CH_3}$	В	$\underset{CF_3}{\overset{HO}{}} (CH_2)_4 CH_3}_{(CH_2)_4 CH_3}$	71	12	Сно	В		23

^aAll reactions were performed in DMF, using 3 equiv (based on carbonyl compound) of **2b**. Method A: no HMDS present. Method B: 6 equiv of HMDS present in the reaction mixture. ^bIsolated yield of pure compound.

moting the trifluoromethylation of other ketones (runs 6-11).

It seems reasonable to assume that HMDS promoted the reaction by silvlating the intermediate 7, formed by the reaction of 5 with the trifluoromethyl anion equivalent (Scheme III). Silyl ether 8 was, in fact, detected in the reaction mixture.

We also found that the introduction of 2b into a mixture of 3a and trifluorodichloroethane (9) in DMF led to the formation of alcohol 11¹⁹ in fair yield (Scheme IV). This result was interesting because the formation of 11 indicated the involvement of an intermediate chemically equivalent to anion 10, in which the negative charge is localized on the carbon atom α to the trifluoromethyl group. An anion of this type is highly unstable,²⁰⁻²¹ and hence reports of its nucleophilic addition to carbonyl compounds are rare.

Why the electrogenerated base was so effective in promoting the formation and subsequent reaction of the trifluoromethyl anion equivalent is not clear. However, it seems reasonable to assume that two factors—the use of a tetraalkylammonium counterion and the use of a highly aprotic reaction medium—were, at least in part, responsible for the observed stability of the trifluoromethyl anion equivalent.

(20) Yokozawa, T.; Nakai, T.; Ishikawa, N. Tetrahedron Lett. 1984, 26. 3987.

(21) Fuchigami, T.; Nakagawa, Y. J. Org. Chem. 1987, 52, 5276.

Stereoselective Addition Reactions of Chiral N-Benzylidene-p-toluenesulfinamides. Asymmetric Syntheses of β - and γ -Amino Acids

Duy H. Hua,*,[†] Shou Wu Miao, Jin Shan Chen, and Sadahiko Iguchi¹

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506

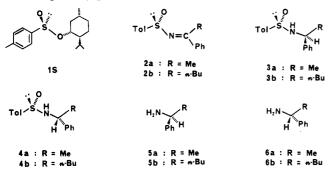
Received October 15, 1990

Summary: Chiral N-benzylidene-p-toluenesulfinamides 2 were prepared by the reaction of benzonitrile with alkyllithium in ether followed by (-)-*l*-menthyl (S)-*p*tolylsulfinate. Treatment of 2 with allylmagnesium bromide in ether at 0 °C gave the adducts (R)-7 with excellent stereoselectivity. Pure chiral sulfinamides 7 were converted into chiral β - and γ -amino acids in four and five steps, respectively.

Racemic N-alkylidenearenesulfinamides were first reported by Davis² and Burger.³ The optically active versions were prepared in 15–70% yields by Cinquini et al.⁴ by the reaction of Grignard reagents with benzonitrile followed by (-)-*l*-menthyl (S)-*p*-toluenesulfinate (1S). As part of our continuing studies in the enantioselective addition reactions of α -sulfinyl ketimines,⁵ the chemistry of

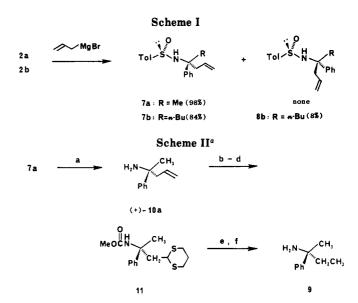
⁽¹⁹⁾ Fujita, M.; Morita, T.; Hiyama, T. Tetrahedron Lett. 1986, 27, 2135.

[†]Fellow of the Alfred P. Sloan Foundation, 1989-1991.

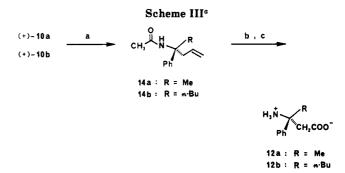

⁽¹⁾ Ono Pharmaceutical Co., Osaka 618, Japan.

 ⁽¹⁾ Ono Pharmaceutical Co., Osaka 616, Japan.
 (2) (a) Davis, F. A.; Friedman, A. J.; Kluger, E. W. J. Am. Chem. Soc.
 1974, 96, 5000. (b) Davis, F. A.; Friedman, A. J. J. Org. Chem. 1976, 41, 898. (c) Davis, F. A.; Kluger, E. W. J. Am. Chem. Soc. 1976, 98, 302. (d) Davis, F. A.; Friedman, A. J.; Nadir, U. K. J. Am. Chem. Soc. 1978, 100, 2844.

⁽³⁾ Burger, K.; Albanbauer, J.; Kafig, F.; Penninger, S. Liebigs Ann. Chem. 1977, 624.


^{(4) (}a) Cinquini, M.; Cozzi, F. J. Chem. Soc. Chem. Commun. 1977, 502. (b) Ibid. 1977, 723. (c) Annunziata, R.; Cinquini, M.; Cozzi, F. J. Chem. Soc., Perkin Trans. 1 1982, 339-43.

chiral N-alkylidene-p-toluenesulfinamides was investigated. Herein, we report the synthesis of chiral Nbenzylidene-p-toluenesulfinamides 2, stereoselective addition reactions of 2, and conversions of the adducts to 100% optically pure β - and γ -amino acids.



Higher yields of chiral N-benzylidene-p-toluenesulfinamides have now been realized by treating benzonitrile with alkyllithium (CH₃Li or n-BuLi) in ether at 0 °C for 1 h followed by the addition of 1S at 0 °C. Sulfinamides 2 [2a, 50% yield (and 10% recovery of 1S)⁶ and 2b, 75% yield (and 5% of 1S)] were thus prepared. The E stereochemistry of 2a was shown by single-crystal X-ray analysis.⁷ Sulfinamides 2 can be stereoselectively reduced with diisobutylaluminum hydride (DIBAL)⁸ in THF at -30 °C for 1 h to provide mainly sulfinamides 3. From 2a, a 92% yield of 3a and 4a was formed in a ratio of 96:4, and from 2b, a 96% yield of 3b and 4b (94:6) was obtained. Sulfinamides 3 were separated on a silica gel column using a hexane-ether mixture as eluant and then hydrolyzed with 2 equiv of CF_3CO_2H in methanol⁹ at 25 °C for 3 h to give 100% optically pure (S)-amines 5 (\sim 92% yields). The minor isomers, 4, contain a small amount of 3. Amines 6 can be prepared by the same procedure starting with (+)-d-menthyl (R)-p-toluenesulfinate $(1\mathbf{R})$.

Remarkably, sulfinamides 2 also underwent stereoselective addition reaction with allylmagnesium bromide in ether at 0 °C for 2.5 h to produce (R)-7. From 2a, a 98% yield of a single diastereomer (R)-7a { $[\alpha]^{22}_{D} = +43.2^{\circ}$ (c 1.05, CHCl₃) was obtained while from 2b, a 92% yield of **7b** {[α]²²_D = +59.2° (*c* 3.25, CHCl₃)} and **8b** {[α]²²_D = +1.1° (c 2.05, CHCl₃)} (91:9) was realized (Scheme I). Diastereomers 7b and 8b were readily separated by silica gel column chromatography employing a mixture of hexane and ether as eluant. The absolute configuration of the newly formed chiral center of 7 was determined by converting sulfinamide 7a into the known amine, (+)-(R)-2phenyl-2-butylamine (9)¹⁰ as outlined in Scheme II. Hydrolysis of 7a with 2 equiv of CF_3CO_2H in MeOH at 25 °C gave a 97% yield of (+)-10a. Carbamoylation of (+)-10a with methyl chloroformate followed by ozonolysis in CH₂Cl₂ at -78 °C and treatment with 1,3-propanedithiol produced a 67% overall yield of dithiane 11. Desulfurization of 11 with Raney nickel in ethanol at 25 °C followed by removal of the carbamate group with KOH-H₂O-diethylene glycol at 100 °C¹¹ furnished a 67% yield of

° (a) 2 equiv of CF₃COOH, MeOH, 25 °C, 3 h; 97% yield; (b) 1.5 equiv of $ClCO_2Me$, 3 equiv of pyridine, ether, 25 °C, 5 h; 80% yield; (c) O_3 , CH_2Cl_2 , -78 °C; CH_3SCH_3 ; 92% yield; (d) 1 equiv of HSCH₂CH₂CH₂SH, CH₂Cl, 0.4 equiv of BF₃ ether, 25 °C, 3 h; 90% yield; (e) Raney Ni, EtOH, 25 °C, 4 h; 70% yield; (f) KOH, H₂O, HOCH₂CH₂OCH₂CH₂OH, 100 °C, 3 h; 95% yield.

^a (a) Ac₂O, Et₃N, ether, 0 °C, 1 h (R = CH₃, 95% yield; R = n-Bu, 93% yield); (b) (i) O₃, CH₂Cl₂, -78 °C; (ii) AgNO₃, KOH, EtOH, 0 °C (R = CH₃, 70% yield; R = n-Bu, 69% yield); (c) (i) 1 N HCl, H₂O, 100 °C, 12 h; (ii) NH₄OH; Rexyn-101 (H⁺) (R = CH₃, 80% yield; R = n-Bu, 87% yield).

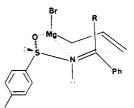


Figure 1.

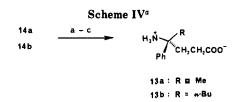
(+)-(R)-9; $[\alpha]^{22}_{D} = +18^{\circ} (c \ 0.8, \text{CHCl}_{3}) (\text{lit.}^{10} +15.8^{\circ}; R)$ configuration).

A six-membered-ring transition state for this addition reaction is proposed (Figure 1). The magnesium chelates with both N and O atoms of sulfinamides 2; therefore, approach of the allyl Grignard reagents occurs from the re face¹² of the sulfinamides. The suggestion of a six-

^{(5) (}a) Hua, D. H.; Bharathi, S. N.; Takusagawa, F.; Tsujimoto, A.; Panangadan, J.; Hung, M. H.; Bravo, A. A.; Erpelding, A. M. J. Org. Chem. 1989, 54, 5659. (b) Hua, D. H.; Bharathi, S. N.; Robinson, P. D.; Tsujimoto, A. J. Org. Chem. 1990, 55, 2128.
(6) With methylmagnesium bromide⁴ only 15% yield of 2a was real-

ized.

⁽⁷⁾ Robinson, P. D.; Hua, D. H.; Chen, J. S.; Saha, S. Acta Crystallogr., (a) The stereochemistry at sulfur 2a has previously been established.⁴ The geometry of 2b is assumed by analogy to 2a.
(8) The reductions⁴ of sulfinamide 2a with NaBH₄, LiAlH₄, or lithium


alkoxyaluminum hydrides gave lower optical yields

⁽⁹⁾ Kikolajczyk, M.; Drabowicz, J.; Bujnicki, B. J. Chem. Soc., Chem. Commun. 1976, 568.

^{(10) (}a) Cram, D. J.; Bradshaw, J. S. J. Am. Chem. Soc. 1963, 85, 1108.
(b) Kopecky, K. R.; Mojelsky, T. W.; Gillan, T.; Barry, J. A.; Lopez Sastre, J. A. Can. J. Chem. 1977, 55, 1001.

⁽¹¹⁾ Wenkert, E.; Hudlicky, T.; Hollis Showalter, H. D. J. Am. Chem. Soc. 1978, 100, 4893.

⁽¹²⁾ The Izumi-Tai nomenclature is employed: Izumi, I.; Tai, A. Stereodifferentiating Reactions; Kodansha Ltd.: Tokyo; Academic Press: New York, 1977; pp 68-69.

^a (a) (i) BH₃·THF, 0 °C, 3 h; (ii) NaOH, 30% H₂O₂ (R = CH₃, 55% yield; R = *n*-Bu, 60% yield); (b) (i) pyridinium chlorochromate, CH₂Cl₂, 25 °C; (ii) AgNO₃, KOH, EtOH, 0 °C (R = CH₃, 65% yield; R = *n*-Bu, 80% yield); (c) (i) 1 N HCl, H₂O, 100 °C, 12 h; (ii) NH₄OH; Rexyn-101 (H⁺) (R = CH₃, 81% yield; R = *n*-Bu, 85% yield).

membered-ring transition state is in accord with that proposed for the reactions of allylmagnesium bromide with aldehydes¹³ and allylboranes with imines;¹⁴ it is also supported by the addition reaction of (3-methyl-2-butenyl)magnesium bromide^{13b} with **2a** which provided the γ -adduct, *N*-(1,2,2-trimethyl-1-phenyl-3-butenyl)-*p*-toluenesulfinamide {83% yield; a single isomer: $[\alpha]^{22}_D = +19.4^{\circ}$ (*c* 1.2, CHCl₃)}. The reactivity of sulfinamides **2** described here differs from that of ketimines in that the sulfinamides did not undergo addition reactions with *n*-BuLi or vinylmagnesium bromide, but underwent deprotonation at the α -imino carbon instead.

The optical purity of (+)-10a was also determined by treating (+)-10a with Mosher's acid chloride,¹⁵ (+)-(R)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride in pyridine at 50 °C, to give the corresponding amide whose ¹H and ¹³C NMR (400 and 100 MHz) spectra indicated a single diastereomer.¹⁶

Chiral β -¹⁷ and γ -amino acids¹⁸ are important intermediates in organic synthesis and biological studies, and amines (+)-10 were readily converted into β - and γ -amino acids (-)-12 and (+)-13 (Scheme III and IV). Acetylation of (+)-10 with acetic anhydride and triethylamine in ether, ozonolysis of the resulting amides (+)-14 with O₃ in CH₂Cl₂ at -78 °C, and subsequent oxidation with AgNO₃-KOH¹⁹ in ethanol at 0 °C, and deacetylation of the resulting acids with 1 N HCl in refluxing H₂O²⁰ provided β -amino acids (-)-12 {(-)-12a, $[\alpha]^{22}_{D} = -10.2^{\circ}$ (c 0.78, CH₃OH); (-)-12b, $[\alpha]^{22}_{D} = -13.1^{\circ}$ (c 0.38, CH₃OH)}. Hydroboration of (+)-14 with BH₃·THF followed by oxidation and then hydrolysis with 1 N HCl furnished γ -amino acids (+)-13 {(+)-13a, $[\alpha]^{22}_{D} = +2.3^{\circ}$ (c 0.75, MeOH); (+)-13b, $[\alpha]^{22}_{D} = +25.3^{\circ}$ (c 0.3, MeOH)}. Since (+)-7a and 7b are single diastereomers, amino acids (-)-12 and (+)-13 can be assumed to be 100% optically pure.

The highly efficient stereoselective addition reaction of chiral N-benzylidene-p-toluenesulfinamides with allylmagnesium bromide provided optically pure amines, β - and γ -amino acids. Related asymmetrically induced reactions of chiral conjugated N-alkylidene-p-toluenesulfinamides with substituted allyl Grignard reagents and other organometallic species will be reported in due course.

Acknowledgment. We gratefully acknowledge financial support from the National Institute of General Medical Sciences (Grant GM36336), the National Science Foundation (Grant CHE-8800654), and the American Heart Association, Kansas Affiliate (G-9).

Supplementary Material Available: Optical rotations, ¹H and ¹³C (400 and 100 MHz) NMR and mass spectral data, and elemental analyses for compounds 2–14 and ¹H and ¹³C NMR data for Mosher's derivatives of (+)-10a and (-)-10a (11 pages). Ordering information is given on any current masthead page.

^{(13) (}a) Yamamoto, Y.; Komatsu, T. Maruyama, Y. J. Organomet. Chem. 1985, 285, 31. (b) Idrissi, M. E.; Santelli, M. J. Org. Chem. 1988, 53, 1010. A method reported by Santelli^{13b} was followed by mixing 1-bromo-3-methyl-2-butene, magnesium turnings, and 2a in ether at 25 °C. Attempts to prepare (3-methyl-2-butenyl)magnesium bromide by stirring 1-bromo-3-methyl-2-butene and magnesium turnings in ether or THF failed. A mixture of byproducts including the dimer, 2,7-dimethyl-2,6-octadiene, was formed.

methyl-2,6-octadiene, was formed. (14) Yamamoto, Y.; Nishii, S.; Maruyama, Y.; Komatsu, T.; Ito, W. J. Am. Chem. Soc. 1986, 108, 7778 and references cited therein.

⁽¹⁵⁾ Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

⁽¹⁶⁾ The (-)-(S)-1-methyl-1-phenyl-3-butenamine [(-)-10a] was also prepared from (+)-d-menthyl (R)-p-toluenesulfinate $(1\mathbf{R})$, and its Mosher derivative showed different ¹H and ¹³C NMR spectra from those of the Mosher derivative of (+)-10a.

⁽¹⁷⁾ Synthesis, for example: (a) d'Angelo, J.; Maddaluno, J. J. Am. Chem. Soc. 1986, 108, 8112. Use of β -lactam synthesis: (b) Salzmann, T. N.; Ratcliffe, R. W.; Christensen, B. G.; Bouffard, F. A. J. Am. Chem. Soc. 1980, 102, 6161. Biological studies: (c) Gordon, E. M.; Godfrey, J. D.; Delaney, N. G.; Asaad, M. M.; Von Langen, D.; Cushman, D. W. J. Med. Chem. 1988, 31, 2199.

^{(18) (}a) Petter, R. C.; Banerjee, S.; Englard, S. J. Org. Chem. 1990, 55, 3088. (b) Takemoto, Y.; Matsumoto, T.; Ito, Y.; Terashima, S. Tetrahedron Lett. 1990, 31, 217.

⁽¹⁹⁾ Kuhn, R.; Badstübner, W.; Grundmann, C. Berichte 1936, 69b, 98.

⁽²⁰⁾ Dilbeck, G. A.; Field, L.; Gallo, A. A.; Gargiulo, R. J. J. Org. Chem. 1978, 43, 4593.